Ultra-broadband THz time-domain spectroscopy of common polymers using THz air photonics

نویسندگان

  • Francesco D’Angelo
  • Zoltán Mics
  • Mischa Bonn
  • Dmitry Turchinovich
چکیده

Terahertz-range dielectric properties of the common polymers low-density polyethylene (LDPE), cyclic olefin/ethylene copolymer (TOPAS), polyamide-6 (PA6), and polytetrafluoroethylene (PTFE or Teflon) are characterized in the ultra-broadband frequency window 2-15 THz, using a THz time-domain spectrometer employing air-photonics for the generation and detection of single-cycle sub-50 fs THz transients. The time domain measurements provide direct access to both the absorption and refractive index spectra. The polymers LDPE and TOPAS demonstrate negligible absorption and spectrally-flat refractive index across the entire spectroscopy window, revealing the high potential of these polymers for applications in THz photonics such as ultra-broadband polymer-based dielectric mirrors, waveguides, and fibers. Resonant high-frequency polar vibrational modes are observed and assigned in polymers PA6 and PTFE, and their dielectric functions in the complete frequency window 2-15 THz are theoretically reproduced. Our results demonstrate the potential of ultrabroadband air-photonics-based THz time domain spectroscopy as a valuable analytic tool for materials science. ©2014 Optical Society of America OCIS codes: (300.6495) Spectroscopy, terahertz; (160.5470) Polymers; (320.7150) Ultrafast spectroscopy. References and links 1. D. H. Auston and M. C. Nuss, “Electrooptic generation and detection of femtosecond electrical transients,” IEEE J. Quantum Electron. 24(2), 184–197 (1988). 2. D. Grischkowsky, S. Keiding, M. Van Exter, and C. Fattinger, “Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors,” J. Opt. Soc. Am. B 7(10), 2006–2015 (1990). 3. B. Ferguson and X.-C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002). 4. P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging Modern techniques and applications,” Laser Photon. Rev. 5(1), 124–166 (2011). 5. S. Wietzke, C. Jansen, M. Reuter, T. Jung, D. Kraft, S. Chatterjee, B. M. Fischer, and M. Koch, “Terahertz spectroscopy on polymers: A review of morphological studies,” J. Mol. Struct. 1006(1–3), 41–51 (2011). 6. N. Nagai and R. Fukasawa, “Abnormal dispersion of polymer films in the THz frequency region,” Chem. Phys. Lett. 388(4–6), 479–482 (2004). 7. P. D. Cunningham, N. N. Valdes, F. A. Vallejo, L. M. Hayden, B. Polishak, X.-H. Zhou, J. Luo, A. K.-Y. Jen, J. C. Williams, and R. J. Twieg, “Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials,” J. Appl. Phys. 109(4), 043505 (2011). 8. B. Scherger, M. Scheller, C. Jansen, M. Koch, and K. Wiesauer, “Terahertz lenses made by compression molding of micropowders,” Appl. Opt. 50(15), 2256–2262 (2011). 9. K. Nielsen, H. K. Rasmussen, A. J. L. Adam, P. C. Planken, O. Bang, and P. U. Jepsen, “Bendable, low-loss Topas fibers for the terahertz frequency range,” Opt. Express 17(10), 8592–8601 (2009). 10. D. Turchinovich, A. Kammoun, P. Knobloch, T. Dobbertin, and M. Koch, “Flexible all-plastic mirrors for the THz range,” Appl. Phys., A Mater. Sci. Process. 74(2), 291–293 (2002). 11. Q. Wu and X.-C. Zhang, “7 terahertz broadband GaP electro-optic sensor,” Appl. Phys. Lett. 70(14), 1784–1786 (1997). 12. Q. Wu, M. Litz, and X. C. Zhang, “Broadband detection capability of ZnTe electro-optic field detectors,” Appl. Phys. Lett. 68(21), 2924–2926 (1996). #208438 $15.00 USD Received 17 Mar 2014; revised 9 May 2014; accepted 9 May 2014; published 15 May 2014 (C) 2014 OSA 19 May 2014 | Vol. 22, No. 10 | DOI:10.1364/OE.22.012475 | OPTICS EXPRESS 12475 13. N. Karpowicz, J. Dai, X. Lu, Y. Chen, M. Yamaguchi, H. Zhao, X.-C. Zhang, L. Zhang, C. Zhang, M. PriceGallagher, C. Fletcher, O. Mamer, A. Lesimple, and K. Johnson, “Coherent heterodyne time-domain spectrometry covering the entire “terahertz gap”,” Appl. Phys. Lett. 92(1), 011131 (2008). 14. N. Karpowicz, X. Lu, and X.-C. Zhang, “Terahertz gas photonics,” J. Mod. Opt. 56(10), 1137–1150 (2009). 15. J. Liu and X. C. Zhang, “Birefringence and absorption coefficients of alpha barium borate in terahertz range,” J. Appl. Phys. 106(2), 023107 (2009). 16. M. Zalkovskij, C. Zoffmann Bisgaard, A. Novitsky, R. Malureanu, D. Savastru, A. Popescu, P. Uhd Jepsen, and A. V. Lavrinenko, “Ultrabroadband terahertz spectroscopy of chalcogenide glasses,” Appl. Phys. Lett. 100(3), 031901 (2012). 17. N. Vieweg, B. M. Fischer, M. Reuter, P. Kula, R. Dabrowski, M. A. Celik, G. Frenking, M. Koch, and P. U. Jepsen, “Ultrabroadband terahertz spectroscopy of a liquid crystal,” Opt. Express 20(27), 28249–28256 (2012). 18. D. J. Cook and R. M. Hochstrasser, “Intense terahertz pulses by four-wave rectification in air,” Opt. Lett. 25(16), 1210–1212 (2000). 19. K. Y. Kim, A. J. Taylor, J. H. Glownia, and G. Rodriguez, “Coherent control of terahertz supercontinuum generation in ultrafast laser–gas interactions,” Nat. Photonics 2(10), 605–609 (2008). 20. N. Karpowicz and X.-C. Zhang, “Coherent terahertz echo of tunnel ionization in gases,” Phys. Rev. Lett. 102(9), 093001 (2009). 21. A. Nahata and T. F. Heinz, “Detection of freely propagating terahertz radiation by use of optical secondharmonic generation,” Opt. Lett. 23(1), 67–69 (1998). 22. Y. S. You, T. I. Oh, and K. Y. Kim, “Off-axis phase-matched terahertz emission from two-color laser-induced plasma filaments,” Phys. Rev. Lett. 109(18), 183902 (2012). 23. P. Klarskov, A. C. Strikwerda, K. Iwaszczuk, and P. U. Jepsen, “Experimental three-dimensional beam profiling and modeling of a terahertz beam generated from a two-color air plasma,” New J. Phys. 15(7), 075012 (2013). 24. I. Pupeza, R. Wilk, and M. Koch, “Highly accurate optical material parameter determination with THz timedomain spectroscopy,” Opt. Express 15(7), 4335–4350 (2007). 25. P. U. Jepsen and B. M. Fischer, “Dynamic range in terahertz time-domain transmission and reflection spectroscopy,” Opt. Lett. 30(1), 29–31 (2005). 26. S. Krimm, C. Y. Liang, and G. B. B. M. Sutherland, “Infrared spectra of high polymers. II. Polyethylene,” J. Chem. Phys. 25(3), 549–562 (1956). 27. J. R. Birch, “The far infrared optical constants of polyethylene,” Infrared Phys. 30(2), 195–197 (1990). 28. G. W. Chantry, J. W. Fleming, E. A. Nicol, H. A. Willis, M. E. A. Cudby, and F. J. Boerio, “The far infra-red spectrum of crystalline polytetrafluoroethylene,” Polymer 15(2), 69–73 (1974). 29. G. W. Chantry, E. A. Nicol, R. G. Jones, H. A. Willis, and M. E. A. Cudby, “On the vibrational assignment problem for polytetrafluoroethylene: 1. The far infra-red spectrum,” Polymer 18(1), 37–41 (1977). 30. P. Dannetun, M. Schott, and M. Rei Vilar, “High-resolution electron energy loss spectroscopy of thin crystalline highly oriented films of poly(tetrafluoroethylene),” Thin Solid Films 286(1–2), 321–329 (1996). 31. C. Y. Liang and S. Krimm, “Infrared spectra of high polymers. III. Polytetrafluoroethylene and Polychlorotrifluoroethylene,” J. Chem. Phys. 25(3), 563–571 (1956). 32. V. A. Bershtein and V. A. Ryzhov, “Relationship between molecular characteristics of polymers and parameters of far-infrared spectra,” J. Macromol. Sci. Part B Phys. 23(2), 271–287 (1984). 33. W. F. X. Frank and H. Fiedler, “On the problem of direct observation of H-bridge interactions in polymers by FIR spectroscopy,” Infrared Phys. 19(3–4), 481–489 (1979). 34. I. Matsubarai and J. H. Magill, “Lower-frequency infrared spectra and structures of some typical aliphatic polyamides*,” J. Polym. Sci., Polym. Phys. Ed. 11, 1173–1187 (1973). 35. H. Tadokoro, “Structural studies of polyesters. II. Far-infrared spectra of aliphatic polyesters: comparison with α-polyamides,” J. Chem. Phys. 49(8), 3359–3373 (1968). 36. E. S. Clark, “The molecular conformations of polytetrafluoroethylene: forms II and IV,” Polymer 40(16), 4659– 4665 (1999). 37. M. Dressel and G. Grüner, Electrodynamics of Solids (Cambridge University, 2002).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generation and Detection of Terahertz Radiation from Laser-Plasmas

View Online References[1] X.-Y. Pen; J.-H. Teng; X.-H. Zhang; Y.-L. Foo, Distortionanalysis of pulsed terahertz signal measured with spectral-encod-ing technique. Journal of Applied Physics 108, 093112 (2010);doi:10.1063/1.3499639[2] X.-Y. Peng; J. Teng; H. Liu; H. Tanoto; H. Guo; Z.-M. Sheng;J. Zhang, Distortion reduction in strong terahertz signals usingbroadba...

متن کامل

Time and Frequency Resolved THz Spectroscopy of Micro- and Nano-Systems

Terahertz technology [1], at present a dynamically developing field, was enabled by advances in ultra-short pulse lasers and semiconductor coherent sources in the frequency range of 1–50 THz. The extensive activities are focused on THz optics, spectrally bright sources, and detectors. The terahertz time-domain spectroscopy and terahertz imaging are main fields, where terahertz technology finds ...

متن کامل

Investigation of ultra-broadband terahertz time-domain spectroscopy with terahertz wave gas photonics

Recently, air plasma, produced by focusing an intense laser beam to ionize atoms or molecules, has been demonstrated to be a promising source of broadband terahertz waves. However, simultaneous broadband and coherent detection of such broadband terahertz waves is still challenging. Electro-optical sampling and photoconductive antennas are the typical approaches for terahertz wave detection. The...

متن کامل

Terahertz wireless communications based on photonics technologies.

There has been an increasing interest in the application of terahertz (THz) waves to broadband wireless communications. In particular, use of frequencies above 275 GHz is one of the strong concerns among radio scientists and engineers, because these frequency bands have not yet been allocated at specific active services, and there is a possibility to employ extremely large bandwidths for ultra-...

متن کامل

Diffraction-limited ultrabroadband terahertz spectroscopy

Diffraction is the ultimate limit at which details of objects can be resolved in conventional optical spectroscopy and imaging systems. In the THz spectral range, spectroscopy systems increasingly rely on ultra-broadband radiation (extending over more 5 octaves) making a great challenge to reach resolution limited by diffraction. Here, we propose an original easy-to-implement wavefront manipula...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017